Calibration of non-catching precipitation sensors

MeteoMet workshop, Genova University
March 11th-12th 2015
Tuukka Pekkanen / Vaisala Offering
Generic needs for measurement parameter

- Measurement is globally understood and accepted
- Definition of measurement parameter is uniform
- Measurement requirements are harmonized
- Measurement is standardized

=> WMO guidelines
=> ICAO requirements
=> International standards
=> National regulation
Measurement uncertainty

- Measurement
 - Initial measurement uncertainty
 - Regulation Standardization
 - Maintaining measurement uncertainty
 - Calibration & Service requirements
 - Environmental circumstances
 - Specific events (icing, etc)
Motivation

- Continue with global field tests, but at the very same time speed up testing in laboratory conditions

- Looking for continuous improvements precipitation measurement calibration methods
 - Interest for standardized calibration methods

- Specific need for low intensity testing methods
 - Small droplet size
 - Controlled droplet distribution over large range
WXT series – Impact detector

- Kinetic energy of raindrops falling with terminal velocity generate mechanical impulses.
PWD series – Forward scattering

- Scattered light from particles like water droplets and snow flakes, which have a diameter in the order of the magnitude of the light waveleght

- Capacitive sensor to detect liquid water content
Old Rain lab
New Rain lab

- Driper tank
- Drop redistribution screen
- Optical reference measurement
- DUT
- Precision Balance
- Rainfall simulator
- 14 meters
Drop-forming simulator
Drop size distribution
Theoretical capabilities of the simulator

- Fully automated rainfall simulation system with precise control of within 1 % for intensity rates ranging from 0 to ~220 mm/h
- Drop former produces average drop size of 4.5 mm. The redistribution screen reworks drops to produce DSD similar to natural rainfall with intensities ranging from at least 10 to 160 mm/h
- Rainfall simulation system is installed at height of 14 m permitting rain droplets of 4.3 mm diameter and smaller to reach 95 % of their respective terminal velocities

<table>
<thead>
<tr>
<th>Intensity range</th>
<th>Natural DSD</th>
<th>Increment</th>
<th>Repeatability</th>
<th>Terminal velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 220 mm/h</td>
<td>10 – 160 mm/h</td>
<td>0.0035 mm/h</td>
<td>Within 1 %</td>
<td>95 % for 4.3 mm drops and smaller</td>
</tr>
</tbody>
</table>
Optical reference measurement

Measurement plane 1
Size

If St1 ~ St2 then particle is in measurement area A and particle size can be calculated from the attenuation. With multiple samples from the same particle also shape can be estimated.

Measurement plane 2
Velocity

\[V = \frac{h}{t} \]
Summary

- Type calibration in different rain type events requires extensive laboratory and global field testing in co-operation with end-users

- Standardized testing and calibration methods are under continuous improvement practice
 - Precipitation test field: better monitoring tools
 - Rain laboratory: better control, better optical reference

- To calibrate catching type of precipitation sensors at field is relatively straightforward, but special challenges to calibrate non-catching type of precipitation sensors at field
Thank you