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1. A CED approach to model wind-induced errors

Problem outline

Objective
Quantification of the precipitation measurements errors caused by the wind expo-
sure of catching type gauges by means of fluid-dynamics simulations.

An under-estimation of the precipitation measurements is generally observed in
presence of significant wind regimes.

Laboratory experiment by John Kochendorfer, NOAA).




1. A CFD approach to model wind-induced errors

Problem outline

Objective
Quantification of the precipitation measurements errors caused by the wind expo-
sure of catching type gauges by means of fluid-dynamics simulations.

An under-estimation of the precipitation measurements is generally observed in
presence of significant wind regimes.

The collection efficiency CFE is
commonly represented by the ra-
tio:

CE: hmeas (1)

htrue

where hegp (mm) is the precipita-
tion measured by a gauge exposed
to the wind and h;geq; (mm) the
value obtained by an ideal instru-
ments not affected by the wind ex-

WMO Guide to Meteorological Instruments and posure.
Methods of Observation.
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1. A CFD approach to model wind-induced errors

Problem outline

Currently available CE estimations are obtained by means of comparisons be-
tween co-located gauges installed in experimental sites of time-averaged
numerical simulations (Nespor and Sevruk, 1999; Thériault et. al, 2012)
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Courtesy of Dr. Mareile Wolff (Norwegian Meteorological Institute).




1. A CFD approach to model wind-induced errors

Problem outline

In many cases the infield CE estimates are evaluated by accepting as true the
measurement obtained with a DFIR shielded gauge.

NCAR/FAA/NOAA field site in Marshall (Colorado, USA).
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2. Airflow simulations

()uthne

The 3D analysis of the air velocity fields has been conducted with two different
finite volumes approaches:

> Time-averaged numerical solutions computed by simulating different wind speed
conditions U,, with a Reynold Averaged Navier-Stokes equations (RANS)
SST k-w model.

» Time-dependent analysis using Large Eddy Simulations (LES) with Smagorin-
sky model to solve spatial scales which are smaller than the cell dimension
(sub-grid scales SGS).




2. Airflow simulations

Simulations set-up

Geometries and boundary conditions
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—
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» The RANS meshes use variable number of elements (ranging from 2 mln to 6
mln) depending on the simulated geometries.
» The LES meshes are composed by 25/29 mln elements so as to obtain numerical

convergence and accurate results.




2. Airflow simulations

Discretization of the spatial domain Simulations set-up
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Vertical section (y = 0 m) of the spatial grid. The plane is parallel to U,, and passes
through the center of the cylindric gauge geometry.




2. Airflow simulations

RANS Results
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> Between the upwind windshield fences and the gauge, an attenuation of the
time-averaged air velocity with respect to U, is shown.
> The left figure shows an extended zone characterized by high air velocity values
above the orifice of the gauge.
» A comparison with similar literature studies reveals a better level of details of
the air velocity field thanks to the finer spatial grid.
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2. Airflow simulations

LES Results Time-Dependent Simulations

LES - Wind speed Uy, =5 m/s case
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2. Airflow simulations

LES Results Time-Dependent Simulations

LES - Wind speed Uy =5 m/s case
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Vorticity color plots

» The windshield upwind elements entail a production of turbulence.
> The airflow transports eddies from the upwind windshield elements to the gauge
collecting section with implications for the precipitation trajectories.

2015 11/
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3. Collection efficiency estimation

Hydro-meteors schemes Methodology

» Parametrization of the snow particles (based on Rasmussen et al., 1999):
b
X(dp) = axdy® (2)

where X represents the following quantities: terminal velocity of the particles
(wr), volume (V},), density (pp) and cross-sectional area (Ap). And ag and by
are empirical coefficients that depends on the crystal types (dry and wet
Snow).

> Particles Size Distribution (PSD):
N(dp) = Noexp(—Adp) (3)
with Ng =5-10% m~% and A = 0.5 mm~—1.

» Total collection efficiency at given wind speed U,:

CE(Uy) = Lgdpmaz Vi (dp)Asinside (dp, Uw) N (dp)d(dp) w

d max
L7 Vi (dp) Agauge (dp, Un) N (dp)d(dp)

where Vi, (dp) is the water equivalent volume of the precipitation,
Ainside(dp, Uw) the area of the collecting section associated with the entering
particles and Agquge the total area.
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3. Collection efficiency estimation ﬂﬂ“
Initial conditions of the time-dependent analysis Methodology

The initial position of the trajectories is defined on a vertical rectangular grid (a
seeding window with length L = 0.4 m and variable height H) located upwind the

gauge.

Location of the initial positions of the particles trajectories.
matteo.colliQunige.it

March, 12th 2015 14/19



"N’

o o o o -
3. Collection efficiency estimation ﬂﬂ“
Methodology

Initial conditions of the time-dependent analysis

Particles number:
> The time-dependent tests LES model: 2400 trajectories each run

> Time-averaged RANS model: 3000 to 10000 trajectories

Location of the initial positions of the particles trajectories.
matteo.colliQunige.it

March, 12th 2015 14/19
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3. Collection efficiency estimation ﬂﬂ“
Methodology

Initial conditions of the time-dependent analysis

> 16 different particles diameters covering 0.25 mm < dp < 20 mm
» Two different type of snow here considered: dry and wet

Location of the initial positions of the particles trajectories.
matteo.colliQunige.it

March, 12th 2015 14/19



3. Collection efficiency estimation
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Time-invariant approach. Dry snow trajectories, d, = 1 mm




3. Collection efficiency estimation

Time-variant model Particle Trajectories
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Time-variant approach. Orthogonal projection of a choice of dry snow trajec-
tories, d, = 0.25 mm and U,, =1 m/s.




3. Collection efficiency estimation

Comparison with infield observations Collection efficiency

Comparison between collection efficiency CE obtained with LES simulations
(black curves with triangles) and infield observation (grey scale dots).
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——model DRY snow
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Outline of section 4
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rapping up

» The simulation work highlighted a strong sensitivity of the gauge
collection efficiency to the micro-physical characteristics of the pre-
cipitation particles. Such sensitivity explains the variability observed in
infield CE estimates.

» It has been also revealed that the single Alter windshield must be
considered as a source of turbulence. Its presence increases the time-
dependency of the problem and causes trajectories clustering phenomena.

» The time-dependent simulations described the time-spatial evolution of the
trajectories. The here adopted CFD simulations are a valuable tool to
explain the fundamentals governing collection efficiency.
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